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Abstract 

This paper describes the  int imate connect ion be tween  global integrability condit ions and 
equil ibrium condit ions for s tat ionary Einstein-Maxwell  fields. Regularity condit ions are 
deduced for aU the  presently known classes o f  solutions.  

1. Introduction 

Both Majumdar (1947) and Levy (1968) have considered integrability 
conditions in Einstein-Maxwell theory; Levy restricted bSmself to stationary, 
axially symmetric vacuum solutions I while Majumdar only considered static, 
electrovacuum solutions. In this paper I extend these considerations to 
stationary Einstein-Maxwell solutions. We shall see that the local integrabihty 
conditions are satisfied automatically (in the exterior), but the global inte- 
grability conditions are not and in general specify two independent constraints 
on the parameters describing the solutions. A physical interpretation of these 
integrabihty conditions is attempted and we show that it is plausible to regard 
these conditions as equihbrium conditions that have to be satisfied by the 
sources of the relativistic field. This interpretation is aided by comparison 
with Newtonian theory and by use of a spinning test particle analysis. 

In section 2 we introduce the field equations used in this work. Here also, 
necessary conditions for regularity of solutions to these equations are given. 
An interpretation of one of the two conditions that arise is given. In section 3 
we briefly indicate how the various classes of exact solutions arise in the 
present formalism. We then determine, in section 4, what constraints, if any, 
are to be placed on the parameters describing the exact solutions in order that 
the conditions of integrability be satisfied. In section 5 we use a spinning test 

* Formerly  Queen Elizabeth College, University o f  London.  
1 Levy only considers integrability o f  v; cf. equat ion (3.3). 
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particle analysis to indicate that  the remaining integrability conditions can, in 
general, also be regarded as an equifibrium condition.  The paper ends with a 
conclusion. 

2. Eins te in-Maxwel l  Field Equat ion 

I will use the notat ion of  Israel and Wilson (1972). The metric of  a general 
stat ionary field can be expressed in the form 

ds 2 = - f - l " / m  n dx  m dx  n + f ( d x  4 + (.o m d x m )  2 (2.1) 

then Einstein-Maxwell field equations, 

R c ~  = -87rEc~,  47rEc~ = - F J F ~ e  + ¼ga~Fe~zF e~ (2.2) 

F i a t ; e l  = 0 ,  F ~ = J  c~ = 0  (2.3) 

reduce to 2 

where 

f V 2 E  = V E .  (VE + 2 ~ * v q 0  (2.4) 

f V 2 ~  = Vq~. (VE + 2 ~ * V ~ )  (2.5) 

= 1 E r,,, ~E(,mqd*n) -- E~(,rnXP*n) + c.c. - f Z R m n ( " D  4 ( , m L , n )  + , (2.6) 

f =  ½(E + E*)  + qz~* (2.7) 

E = f - ~ * + i ¢  and ~ = A  4+idb  (2.8) 

The scalar function ~ is determined from the equation 

- f 2 V ^ ~ o =  i(qzV'~* - qz*V~) + V~ (2.9) 

R m n ( 7 )  is the Ricci tensor formed from the positive definite three-dimen- 
sional metric 3'mn. A 4  and q5 are electromagnetic potentials and they define 
the electromagnetic field tensor through the expression 

Fc~  + iF*~ = [ieabc~aad~b,y1/2f -1 + (da46~P -- ~P~/3 4) 
+ &)e(~ae~i3 p - -  ~ e ~ e ~ P ) ]  xll~p (2 . t0 )  

Eliminating ~ from (2.8) we have 

V~ to = - i f  -2 (½VE * + q~Vqz*) + c.c. = W (2.11) 

2 Greek indices run from 1 to 4 and Latin from 1 to 3. Vis the usual gradient operator, 
V 2 the Laptacian using ~lrnn as base metric. A comma denotes partial differentiation, 
a semicolon and a stroke I denotes covariant differentiation with respect to ga# and 
"rrnn, respectively. An asterisk * on a scalar means complex conjugate, while if it appears 
on a tensor it refers to the dual object, eab c is the three-dimensional, completely skew- 
symmetric object with 2123 = 1. 
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The three-dimensional Einstein tensor constructed from "Iron is easily 
deduced from Rmn(7) and we find 

_ 1 - 2  , + , , , , Grnn(T) - - ~  [E,mE,n 2 eft (E,nX~,m + E * , ~  n)-2E(XP,mgt* n +q~*n"P,m) 

-½7mn(E, pE *'p + 4~*E*'P@,p - 4Eqt'P~*p)]+ c.c =-Hmn 

(2.t2) 

So given solutions to equations (2.4) and (2.5) we can find solutions (locally) 
to equations (2.6) and (2.11) for Tmn and ~ ,  respectively, if the following 
integrability conditions are satisfied by the vector W and the set of components 
Hrn n : 

V . W = 0  (2.13) 

and 

Hrnnln = 0 (2.14) 

Making the calculation implied in equations (2.13) and (2.14) we find 

V. W = if  -3 {½ [fV2E - VE .  (VE + 2@*Vg')] 

+ xIt* [ f v Z ~  - V ~ .  (VE + 2vP*V,#)] } + c.c. (2.15) 

and 

H~f= _ f - 3  ((¼E.,,p + ½ ~ * ' P ) [ f V Z E  - VE .  (VE + 2~*V',I0] 

+ ½ [ x I t * E * ' P  - x P * ' P ( E  + E * ) ]  [ f V 2 ~ I  t - V~I * . ( r E  + 2 ' I " 7 ' i ' ) ]  ) + c.c.  

(2.16) 

Thus the local integrability conditions are satisfied automaticalIy because of 
equations (2.4) and (2.5). However, as pointed out by Szekeres (1968) (there 
for the static, vacuum, axisymmetric case), the global integrability conditions 
(G.I.C.) ensuring the existence of a~ and "Yrnn over some finite domain, are 
more severe. The global condition arising from (2.11) is simply expressed as 

f W ' d S =  0 (2.17) 
S 

where S is any closed two-surface in the exterior. [The exterior is here defined 
as those points of space for which equations (2.4) and (2.5) are satisfied.] The 
validity of (2.17) assumes only that ¢o is C 1 on S and follows from an applica- 
tion of Stokes' theorem to an exterior closed two-surface S. The G.I.C. arising 
from (2.12) is that 

f Hi]Xi n] dS = 0 (2.18) 
S 

where Xi is a vector satisfying GqXil ] = 0 and S is any closed two-surface in the 
exterior. For the static vacuum case this condition was given by Muller Zum 
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Hagen (1974). Condition (2.18) follows by integrating Xi(.GiJ - H ij) over the 
surface S and then using the divergence theorem on fsGUXini dS and using 
the identity G{~. - 0. 

A possible interpretation of the physical meaning of (2.18) can be gleaned 
from Newtonian theory. Thus, following Bondi and Morgan (1970), consider 
Newtonian theory with potential ~, satisfying ~2~ = 0, where ~2 is the flat- 
space Laplacian operator. Bondi has constructed a stress tensor for this theory: 

Tij = (i/4rcG) [~,i¢,j - ½6i1(¢, m) z ] (2.19) 

The divergence of this tensor is minus the gravitational force acting at a point, 
and the total force acting over a surface S is therefore 

F i = ~ TiJnj dS (2.20) 
s 

In a static system this force is required to vanish when evaluated over any 
surface. For the purposes of generalization to a nonflat metric (where the 
integrands should be invariants) transvect (2.20) with a constant vector 
vi(vi,] = 0); then (2.20) becomes 

Fivi = f Ti]vi n] dS (2.21) 
S 

So conditions of equilibrium valid in Newtonian theory are that 

fTi]vini  dS = 0 (2.22) 
s 

What I wish to do now is to seek for a generalization of the above stress 
tensor, (2.19), to include relativistic effects. It is fairly clear that static vacuum 
fields of Einstein's theory correspond most closely to Newtonian situations. 
The field equations describing a general static field in Einstein's theory are 
obtainable from equations (2.4)-(2.7). We find they are 

EV2E - (VE) 2 = 0 (2.23) 

or equivalently 

and 

V z (log E) = 0 (2.24) 

Rmn (7) = - ½(log E)(,m (log E),n) (2.25) 

where for the static case f =  goo = E. The Einstein tensor constructed from 
equation (2.25) is 

Gmn (T) = -½ [(log E),m (log E),n - 1Tmn(tog E), p(log E)' P] (2.26) 

Now for weak fields (log E) is a very good approximation to the Newtonian 
potential ~ (up to a multiplicative constant). It is now clear that Gq(7) is the 
natural generalization of the stress tensor Tih We can exploit this correspondence 
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for strong fields and for systems that include Maxwell fields as well. The mean- 
ing of  the G.I.C. (2.18) is now clear. It represents a necessary equilibrium con- 
dition that the sources of  the relativistic field must satisfy. Some support for 
this interpretation will be given in later sections. 

It is not clear what physical interpretation to put on the global condition 
given in (2.17). It seems to have no Newtonian analog. However, in section 5, 
a spinning test particle analysis is employed to show that this condition can also 
be regarded as an equilibrium condition and refers mainly to the equilibrium 
of  spinning sources. 

3. Application to Exact Solutions 

It will be of  some use to describe briefly how to generate the presently 
known classes of  solutions using the present formalism. 

All the known classes of  solutions to the stationary Einstein-Maxwell 
equations reduce to solving one (or two) Laplace equations. All follow straight- 
forwardly if we assume E to be an analytic function of  q~.3 It then follows from 
equations (2.4) and (2.5) that, independently of  any assumption of  spatial 
symmetry, 

E = 1 - ~/a 
where a is a complex constant. 4 Then both  equations (2.4) and (2.5) reduce to 

fV2E = (VE)2(1 - 2aa* + 2aa*E*) (3.1) 

while (2.6) becomes 

- fZRmn(~ ) = ½(1 - 4aa*)E(,mE*n) (3.2) 

These equations are still enormously difficult to solve and further simplifica- 
tions are necessary. In the present context we shall consider only two such 
simplifications. 

(A) Reduction to Axial Symmetry. For this case it is well known that the 
three-dimensional metric 3'ab can be taken in the form [this requires the use 
of the field equation R33 + R 4 4  = __3/33fR33(,),)] 

3'ab = diag (e 2v , e 2~, r 2 ) 

where we choose coordinates 

(z, r, ~ ,  t )  ~÷ ( x  1 , x 2 , x 3 , x 4 )  

We can also assume without loss o f  generality that 

wi = (0, 0, w)  

3 First considered by Ernst (1968), for the axisymmetric case. 

4 Here we fix one of the two arbitrary complex constants that arise here by demanding 
E-~ 1 as ~I' -~ 0. 
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With this simplification to axial symmetry, the form of  (3.1) remains the 
same, but now, o f  course, the operators are written with respect to  the new 
7aa. Also equation (3.2) is much simplified and reduces to the following equa- 
tion which allows for the determination of  v by simple quadrature: 

r (V~)m = c~ m l(p,2 ) + ~m2(--P 1) ~ V  (3.3) 

where ,~ = (0, 0, v) and 

8v,x = r; -2 [(E, IE,~ +E,2E,*I) + 4~(E,1 q~,~ + E,2qz,~) - 4E(~,1 ~ ' 2  

+ ~,2q~3)] + c.c. (3.4) 

8v,2 = - r f  -2 [(E,1E3 - E , : E 3 )  + 4~(E,  1 ~*,1 - E,2 gs3) - 4E(~ ,  1~,'1 

-  ,2 5)1 + c .c .  ( 3 . s )  

Similarly the function co can now be evaluated from equation (2.1 t)  once a 
solution to equation (3.1) is given. 

(B) Reduction to a Flat Background. The metric "lab will be flat iff 
Rmn("l) = 0. [This implies Rmnpq("l) = 0.] This restriction is in some ways a 
degenerate case of  axial symmetry since u - O. However, our differential 
operator V is now more general since we now allow differentiations with 
respect to all three spatial coordinates. We note that this case is generated by 
taking 4aa* = 1. 

With one or another of  the above restrictions (A) or (B), all of  the known 
classes of  solutions can now be derived. 

To obtain the Weyl vacuum, Weyl electromagnetic, Majumdar-Papapetrou, 
and P.I.W. 5 classes of  solutions, we transform equation (3.1) by introducing 
a new complex function X by 

VE 
= P  (3.6) 

VX = E(1 - 2aa*) + aa*(1 + E 2) 

The existence of  X is guaranteed (locally) since VAP = 0. [We also note that the 
denominator in equation (3.6) is the functional form of  f with E*  replaced 
by E.] With this transformation, (3.1) becomes 

2 [E(1 - 2aa*) + aa*(1 + E2)] 2 fV2x  = (VE)Z(E - E*)(1 - 4aa*) (3.7) 

It is now clear from this equation that a harmonic function will generate 
solutions of  the field equations for the following cases: 

(a) E = E*:  This condition gives rise to the Weyl, Majumdar-Papapetrou 
static solutions. If  we define k = 1 - 4aa*, then there are three particular 

s This class recently discovered by Perjes (1971) and independently by Israel and 
Wilson (1972). 
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cases to consider: 
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(1) k = i:  Weyl vacuum class (Bonnor, 1953) 

(2) k = 0: Majumdar-Papapetrou class (Papapetrou, 1947) 
Rmnps(7 ) = O, lei[ =Mi 

(3) k 4= 0, 1 : Weyl electromagnetic class 
teil = hMi, h = const ¢ 1 

In the above ei and Mi are parameters corresponding, respectively, to charge 
and mass of individual sources of  the system. In (2) and (3) it is assumed that 
all the charges have the same sign. 

(b) k = 0. This condition gives rise to the P.I.W. class of solutions. The 
characteristics of this class are that 

Rrnnps(7) = O, { ell = ~ i  

and for every particle in the system h i = +~i or h i = -~Li, where h and ~ corre- 
spond, respectively, to magnetic dipole moment and angular momentum. 

This is as far as one can go with the transformation (3.6). However, there 
are two more classes of interest; the Papapetrou rotating solutions of Papapetro~ 
(1947) and the class recently discovered by Bonnor (1973). 

To generate the Papapetrou class, we return to equation (3.1) and define a 
new complex potential ~ by 

k l / 2 ~ -  1 
E -  kl/2 ~ + 1 ' k 4=0 (3.8) 

Then equation (3.1) becomes 

2(V~)2~ * - ( ~ *  - 1)V2~ = 0 (3.9) 

The electromagnetic generalization (vacuum solutions given by choosing 
k = 1) of the Papapetrou rotating solution is obtained by taking ~ = - i  coth z~ 
(A = A*) for which equation (3.9) gives 

VzA=O (3.10) 

The physical characteristics of  this class are well known. The mass monopole 
term must be taken as zero in order that the metric be Minkowskian at infinity. 
The NUT solution is in this cIass, generated by the monopole solution of the 
above Laplace equation. 

The class recently discovered by Bonnor seems very difficult to derive using 
the present formalism. However, in the present context, only his results are of 
interest. He finds that the whole of his solution is generated by one harmonic 
function B, V2B = 0, where 

B =  and f = g o o = C ~ - 2 ( 2 + g s i n v + h c o s v )  
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Here a, g, h are arbitrary constants. These solutions are axially symmetric 
and seem to resemble the Papapetrou solutions very closely. 

4. Regularity Conditions for Exact Solutions 

We now address ourselves to the investigation of  the constraints placed on 
the parameters describing the exact solutions as a result of  satisfying the G.I.C. 
given in equations (2.17) and (2.18). Throughout this section we are only 
interested in axially symmetric fields (or those for which Rmn(7) = 0) for 
which E = 1 -- ~/a. Equations (2.17) and (2.18) then reduce to, respectively, 

S 
and 

f f - 2 ( 1  _ 4aa.)[2E(,rnE.,n)__ m n ~  L ' * , p l  (4.2) 7 ~,pZ~ l)~mnn dS = 0 
s 

where in (4.2) Grnn~kmln = O. 
For axially symmetric situations a vector ~k m sa t i s fy ing Grnn~rn In = 0 is 

X m = (1 ,0 ,  0). This was given by Muller Zum Itagen for the static vacuum case 
but this vector suffices for this more general case also (cf. Ward, 1974). So for 
the axisymmetric case (4.2) can be written 

I - ¼ f - 2 ( 1  - 4aa*)[2E('IE *'n) - ~InE, pE*'P] n ndS = 0 (4.2a) 

s 
When these conditions are applied to the classes of  solutions described earlier, 
we arrive at the following results: 

A(a). Weyl Vacuum class. For this class E = E* and k 4= 0. These restrictions 
imply that condition (4.1) is vacuous, while (4.2a) becomes [note equation 
(3.6)1 

k 
y _  "2 [X,1 ~(,n _ ½6 ln)~,p)~,P] nn KS = 0 (4.3) 
S 

and since V2X = 0 then (4.3) is easily interpreted. Regarding X as a Newtonian 
potential condition (4.3) states that the component of  force in the z direction 
on the surface S is required to vanish. 

A{b). Ma/umdar-Papapetrou class. Here E = E* and k = 0. Thus both conditions 
(4.1) and (4.2) are automatically satisfied. Systems of  particles described by this 
class are always in equilibrium. This is to be expected from Newtonian considera- 
tions because o f  the special relation between the mass and charge parameters 
in these solutions. 

A(c). Weyl electromagnetic class. Here E = E* and k = 1. We arrive at the same 
conclusions as for A(a). This is also to be expected, since in Newtonian theory 
the force laws of  electromagnetism and gravitation are the same (up to sign). 
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For this class of  solutions, all the charges e i have the same sign and l ell = dmi; 
d = const. 

(B). The P.L W. solutions. Here k = 0 and thus condition (4.2) is automatically 
satisfied, while (4.1) reduces to (note V2X = 0) 

-~ (xVx - X*VX). dS = 0 (4.4) 

S 

We shall at tempt an interpretation of  this condition in section 5. 

(C). The Papapetrou rotating solutions. In terms of the potential A, where 
VzAx = 0, conditions (4.1) and (4.2a) reduce to (k ~a 0) 

k-i7 £ (VA) .  dS = 0 (4.5) 

S 

and 

f --  ½[A ' l A ' n  -- ½~ln(/\,n)(A'n)] n ndS = 0 (4 .6)  

S 

The interpretation of (4.6) is the same as given in A(a). Condition (4.5) is 
an interesting restriction and implies that the monopole contribution to ~ is 
to be taken as zero. This is of  course consistent with the usual restrictions 
placed on the Papapetrou class of  solutions. (This restriction essentially 
eliminates NUT-type solutions.) 

{D). TheBonnor class. For this class (4.1) and (4.2a) reduce to (again V2B = 0) 

V B .  dS : 0 (4.7)  
S 

and 

(42 + h 2 _ 4) f (B'IB ,n - ½61nB,pB'P)nn dS = 0 (4.8) 
S 

As Bonnor points out, restricting g and h so that 42 + h 2 = 4 takes his class 
into a subset of  the P.I.W. class. The restrictions placed on B are the same as in 
the Papapetrou class. 

5. Spinning Test Particles in P.L IV. FieMs 

We now come to the interpretation of  the condition given in equation 
(2.17) for the general case and in equations (4.4), (4.5), and (4.7) for particular 
classes of  solutions. For reasons of  brevity I shall only discuss the conditions 
arising in equation (4.4) since the P.I.W. class of  solutions has aroused con- 
siderable interest recently. There are two main solutions of  this class at present. 
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The first, due to Bonnor and Ward (1972), 6 describes the field of two "Perjeons." 
This solution is generated by the choice of harmonic potential 

X = 1 + m'+rna+i [/l,(z +a)+fl2(z_-a)] (5.1) 
~I r2 t ~i 3 r2 3 ] 

where 
r12 =x 2 +y2 + (x +a)2 

r22 =x 2 +y2 + ( z - a )  2 

The solution for o is of main interest and they find (written in Cartesian 
coordinates) 

" f  ml/~l+ma/J2 + 2 / 1 1 . _ _  r2 '  rl ~ 2#2'r2 ~ m2/al [r2 ( ~ ) r - - T - -  o -- ( y ; _  x . t - ; U  + . 

] m l / ~ 2 [ r l ( l )  ( z - a )  + (z + a) (r 2 + z2 _ a2 ) + . . . .  

x(r  2 +z 2 - a2)[] (5.2) 

where r 2 =x  2 +y2. 
This solution corresponds to the  field of two massive, spinning, charged, 

magnetic particles. At r = 0, z = a, there is a particle of mass rn 2 (numerically 
equal to the charge) and angMar momentum/l~ (numerically equal to magne- 
tic moment) while at r = 0, z = -a ,  there is a particle of mass rn 1 and angular 
momentum #1. 

The second solution is due to Spanos (1974), who constructs the field due 
to two "e 2 = M 2'' Kerr-Newman sources generated by the harmonic potential 

~ MA (5.3) 
X = I +  R--~ 

A = I  

where 
RA 2 =/.2 + ZA 2 

z A =Z+(--1)Ab+iaA 

The solution he finds is (in axisymmetric coordinates) 

¢°O= -2gm ~ +Z*tMA_ zA 2 - 
.4=1 

÷ (Z.2 Z2 ~ iR-7--da- 1 
k A --  3 - - A )  \ 3 - - A  

6 This solution has been considerably generalized by Ward (1973). 

(5.4) 



EQUILIBRIUM FOR EINSTEIN-MAXWELL FIELDS 303 

where o) = (0, 0, 6o4) in (z, r, 4,) coordinates. There is a particle (actually source 
has the geometry of a ring in the background coordinates) in the plane z = b 
of mass M I and angular momentum Mla 1 . Similarly in the plane z = - b ,  there 
is a particle of  mass M 2 and angular momentum M2a 2 . 

In this context the main interest in these solutions is the presence of line 
singularities on various portions of  the axis of  symmetry.  

Bonnor and Ward find that [here written in axisymmetric coordinates 
(z, r, ~)] 

0 t z l > a  

c%(O,z )=  m2,u 1 + m 1 ~  2 
, 2a 2 I z l < a  

Similarly Spanos' solution implies 7 

(:M1M2(a I , z l > b  ~4(o,  z) = + a~) 

~4b 2 + (a 1 +a2) z Izl < b  

(5.5) 

(5.6) 

Since regularity on the axis demands that  6%(0, z) = 0, both  of  these 
solutions have line singularities. For regularity of  the exterior geometry of  
their solutions they require that, in both  solutions, the total angular momentum 
per unit mass should be zero; that is, 

and 

m2/l 1 + m d~2 = 0 for Bonnor, Ward (5.7) 

M1M2 (al + a2) = 0 for Spanos (5.8) 

If one uses the G.I.C. (4.4) in conjunction with equations (5.1) and (5.3) then 
one obtains, as expected, precisely the conditions given in (5.7) and (5.8). 
Attempting to interpret the meaning of the restrictions given in equation (5.7), 
Bonnor and Ward used a test particle analysis and found that when such a 
particle, endowed with charge and mass, was placed in the field of  a single 
Perjeon [put rn 2 = P2 = 0 in (5.1) and (5.2)] it was acted on by a force that 
did not vanish unless the angular momentum,/11,  of  the source field vanished. 
Although their work gave some credence in the interpretation of (5.7) as an 
equilibrium condition, it was by no means conclusive. It is my  purpose in the 
present section to generalize their work by considering the action of a single 
Perjeon on a test particle endowed with mass, charge, angular momentum,  
and magnetic dipole moment .  To treat such a test particle, we require the use 
of  the Papapetrou (1951) equations of  motion (amended slightly to encore- 

7 This corrects the results reached by Spanos. 
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pass magnetic dipole effects). The Papapetrou equations are 

D S  muU+u D--D--suP~ = ±~,u ~,vcpo F~VJu+F.~.~,pVu~(5.9) 
P DS ] -2~, wpo- ,-' - 

DsD v ~SS Sup 2F*'r[UP~'lu 7 (5.10) O-O--s#v + d~blp blvl, tp - - S  v _ = 
DS 

with Matthison condition (cf. also Pirani, 1956) 

SUPuv = 0 (5.11) 

where D/DS = ;/~uUand u ~ = dxU/ds is the test-particles four-velocity. S uv 
is the skew-symmetric spin tensor of the particle and because of (5.11) has only 
three independent components, which are associated with the angular momen- 
tum of the test particle. Equation (5.9) is just the generalization of Newton's 
equation of motion, the L.H.S. being the rate of  change of total momentum 
(including that due to its spin). The R.H.S. are the applied forces, FUr Jr being 
the usual Lorentz force and F*~p'ru the covariant generalization of (p V)B ;'r ~ , • 
which is the classical force on a magnetic dipole p in a field B. 8 The L.H.S. 
of (5.10) is essentially the rate of  change of angular momentum and is to be 
equated with the applied torque, 2F*~lupvluT, which is just the covariant 
generalization of p ^B. 

The whole of this section then, will be concerned with the evaluation of 
the force on a test particle mainly using (5.9). More precisely we shall con- 
sider the effect on a spinning test particle when placed on the axis of symmetry 
in the field of a single Perjeon given by taking m2 =/12 = 0 in (5.1) and (5.2). 
Thus the metric we use is 

ds 2 = - f - l ( d z 2  + dr 2 + r2d~ 2) + f (d t  + 6% d~) 2 

where 

ml + P l ( z+a)  
f - l =  l + - -  

rl  ] r l  3 

cakcp --r 2 {mlldl + 2P1~ 

-- r 1 3 J  

rl  = + [X 2 + y 2  + (Z + a) 2 ] 1/2 (5.12) 

The spin vector S ~ and magnetic moment vector pa of  the test particle are 
taken to he 

S °t = (S 1, O, 0), pa  = (p l ,  O, O) 

8 First suggested to me by Dr. D. Rawson-Harris. 
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and are thus aligned along the axis of symmetry. The spin vector S ~ is related 
to S °~ by (cf. Pirani, 1956) 

S u = -½nu~P~'u~Spo (5.13) 
or 

S lat' = _,171ax'PaSpua 

The physical components of Sla for an observer moving with the test particle 
are the components of angular momentum of the test body (this is easily 
seen from the definition of SUU given in Papapetrou's original paper). Thus 
the physical components of S ° and pa are S (A) and p(n), respectively, where 

S (A) = X(A)p ~ and p(A) = ~n)pO~ 

where X~ A) is an orthonormal tetrad moving with the test particle. 

~ktl ) = ( f l / 2  0,  0 ,  0) ,  ~kt2 ) = (0 ,  f l /2,  O, O) 

x~3) = (o, 0, a, b), x~4) = (o, o, 0 , f  - l a )  

where a and b are to be determined from the orthogonality condition 
X~A)X ('4) = 6~a. Because of our choice of  S% it follows that the only non- 
vanishing components o f S  at~ are S z4 and S 23, where 

It is now easy to show (Ward, t974), with the aid of  equations (5.10) and 
(5.11) and employing the particular characteristics of the metric we are 
using, that equation (5.9) can be put in the form 

D___ (mula) - S u~' ~ + ½R%,ru 'S  °a = -FUr Jr., + F*U#...,rp'ru ~ 
DS w,5 

(5.15) 

where both sides of this equation are to be evaluated at r = 0, z = a; the 
position of the test particle. The important member of (5.15) is/J = 1 (we are 
only interested in the initial force in the z-direction). We see that the second 
term in (5.15) drops out leaving 

d {mdZ '  ~ 
as\  sjz=a 

because 

+ [mF14(u4)2 + u4SOCr(pla4,p + pp~pa4)]l ~ z=a = [-Fl°~J'a 

+ F*la~;TP~6la 1 ] z =a (5.16) 

½Rl"lvoo u ~'Spa = uVS'°'J (P~v,p + I'p~Pov) la 
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Noting that m is the mass of  the test particle and ja  = e//a where e is the 
charge on the test particle, the result of  the long calculation implied in (5.16) 
is 

dsd-q-(m~s)z= a -fa/2S(1){(4//l+2mt//lt[2ml(l+~a) + 4 / / 1 2 ] ( 2 a )  3 2a ] [ ~ - ~  ~ ' ~ g J  

--[~[4ml//1+6//1][( l + m l t 2 + 2 a j  ~-a] ~)-4])//1211 

+f4p(1) f 2//1 [2rn 1 m12 4//12] [- 
[4ml+6mll+20//12] 

+f-l//1 [ ~  (2a)4 (2 -~  J 

4f -1//1 [ 2/'/~ ml 2 4//12 ] 6//lf-21 
+ 2----7--[(2a)--- ~ 4 a ~ + ~ - ~ ]  - ~ J 

-½f-1/2m[~a (1+rn1~+//121 (5.17) 2a] 8a 5] ) 

There is no hope of  choosing the parameters m, e, S 0 ) ,  and p(1) in such a way 
as to make (d/dS)(m dz/dS)z= a = 0. However, by expanding in powers of  a -1 
we find 

d [mdZl _ ( e m l - m r n l )  ml(mle-mml) 29m12(mle-mrnl) 
as--- \ ds ]z=a (2a) 2 ~ 2(2a) 3 - 8(2a) 4 

6//1(P O) + S(1)) 29mla(mle- ram1) + 
(2a) 4 16(2a) s 

+//1 (15mlp(1) +13mlS(1) + //l(ae - 2m)] (2a) 5 " + O(a -6) 

(5.18) 

If  we now force the parameters of  the test particle to mimic those describing 
the exact solution, we must take, say, 

s(t) = -//2, p(1) =//2, e = m = m 2  
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When these identifications are made (5.18) reduces to 

d (  dz) _#a rml ~ 7dS rn2-dS z=a l~aSt 1 2 +m2bq)+O(a-6) 
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(5.19) 

This resuR is fairly strong evidence in thvor of  interpreting the line singularity 
between two Perjeons as a strut holding the particles in position. We should 
not be too worried that this is not an exact result; that is, when (rn2p 1 + 
ml g2) = 0 then (d/dS)(m2 dz/dS)z= a ~ 0 identically. [This is easily seen from 
(5.17).] This is no doubt a result of  replacing a Perjeon, with complicated 
multipole structure, by a test particle with very limited multipole structure. 
As a check on the calculations, (5,19) reduces to the expression given in 
Bonnor and Ward (1972) when/J2 = 0. 

Physically, what is happening? Since the P.I.W. class has only two indepen- 
dent parameters, ~ and m, describing four physical quantities, mass, charge, 

f r o m ;  the particular spin, and magnetic moment ,  it is not obvious 5.18) what 
interactions are. However, it is clear that the O(a -2 term is the usual Newtonian 
mass-mass, charge-charge interaction and is zero only if e = m = rn 2. If this 
identification is made, the elimination of  certain other non-Newtonian inter- 
actions in higher orders is achieved. Equation (5.18) then becomes 

d m2 dds )z=a- (2a) ~- 6/J1 (P(1) +SO))+(~) 5(15mlp(a)+13mlS(l)+ 2m2#l) 

+ O(a -6) (5.20) 

It is now fairly clear that the O(a -4)  term are the spin-spin and magnetic- 
dipole-magnetic-dipole interactions. The latter is classical while the former, 
predicted by Hawking (1972), has been discussed in detail by Wald (1972). 
This term will be zero only if p( t )  = - S O )  and then the O(a - s )  term in (5.19) 
is left. This remaining term displays an asymmetry  between the source (the 
Perjeon) and the test particle by having/~1 as a factor. Indeed, if e = m, then 
from (5.17) we see that if/~ a = 0, there is apparently no "force"  on a test 
particle whereas there is a "force"  if only pO)  = S (1)  = 0. This behavior has 
also been observed by  Wald and is probably a consequence of the test particle 
approximation.  This asymmetry disallows a convincing interpretation of  the 
O(a - s )  term. However, I still feel that the (rn2/l a + ml/~2) factor in this term 
supports the view that  the condition given in (2.17), o f  which a particular case 
is given in (4.4) and thus in condition (5.7), is an equilibrium condition. 
Indeed if a similar calculation is made using the "e z = M 2' '  Kerr-Newman 
solution as the source of  the field, then again the force on a spinning test 
particle is found to be (test particle placed at z = b, with source at z = 0) 
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- -  ml  = ~-f (el M2 - mlM2) + - - ( m l  - e l )  
ds z=b 

1 
+ -~  [3a22M2(mt _ e1 ) + 6M2a2(SO) +p(1))]  

1 
+ -£-( [2a22M22(el - ml)  + 2M22a22ea - 10M22~S (1) 

- 12M22a2pO)] + O(b -6) 

and putting S 0 )  = _ p O )  = maal m l  = ea we obtain 

d (  -dT) 2(M2a2)mlM2(a2+a1) 
ds ma - bS +O(b -6) 

z=b 

which gives exactly the same condit ion as before in order that the O(b-S) 
term should be zero; that is, the sum of  the angular momenta  per unit mass 
should be zero. So again we reach the same conclusions as before as to the 
interpretat ion o f  condit ion (2.17). 

6. Conclusions 

We have a t tempted to  show that the global integrability conditions can be 
plausibly interpreted as equilibrium conditions.  Mathematically,  o f  course, 
the integrabili ty conditions are just smoothness conditions ensuring the 
regularity of  the exterior geometry,  when they are satisfied. The assumption 
then that  any lack of  regularity, in the exterior,  in the metrics considered 
here, corresponds to the existence of  "forces" in the system is a strong assump. 
t ion,  and one can imagine cases where such an assumption is inappropriate.  
Consider for example the NUT solution. This is generated by  the monopole 
solution of  (3.10), and one would imagine that  there were no forces on this 
single particle. However, while the integrabili ty condit ion (4.2) is satisfied for 
this case, (4.1) cannot be satisfied unless the contr ibut ion to  ZX is taken as 
z e r o - t h a t  is, unless the NUT particle is eliminated altogether! This is perfectly 
consistent with the smoothness conditions since the NUT solution has a line 
singularity (in the exterior) stretching from the particle to _oo on the axis of  
symmetry.  One would not  say that  this line singularity corresponded to the 
existence o f  a force in the system. Thus the NUT solution tbrces one to make 
stronger assumptions on the nature o f  particles in a system before one can 
connect G.I.C. wi th  the equilibrium of  the system. Much more work  needs 
to be done to  clarify this state of  affairs. 
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